Redox Biol. 2021 Jun:42:101908.doi: 10.1016/j.redox.2021.101908. Epub 2021 Feb 20.

本文采用的英格恩产品: RNA-Entranster-invivo

Nanomedicine promotes ferroptosis to inhibit tumour proliferation in vivo

Affiliations

Affiliations

  • 1 Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
  • 2 Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
  • 3 Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060, China.
  • 4 Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China. Electronic address: wangj288@mail.sysu.edu.cn.
  • 5 Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
  • 6 Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; Department of Internal Medicine, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510060, China.
  • 7 Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China. Electronic address: pzhenw@mail.sysu.edu.cn.
  • 8 Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China. Electronic address: shuaixt@mail.sysu.edu.cn.
  • 9 Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China. Electronic address: guoyu35@mail.sysu.edu.cn.

Free PMC article

Abstract

miR-101-3p may play a therapeutic role in various tumours. However, its anti-tumour mechanism remains unclear, and a definitive strategy to treat tumour cells in vivo is lacking. The objective of this study was to investigate the inhibitory mechanism of miR-101-3p on tumour cells and to develop relevant nanomedicines for in vivo therapy. The expression levels of miR-101-3p and its target protein TBLR1 in tumour tissues and cells were detected, and their relationship with ferroptosis was clarified. Furthermore, the efficacy of nanocarriers in achieving in vivo therapeutic gene delivery was evaluated. Nanomedicine was further developed, with the anti-proliferative in vivo therapeutic effect validated using a subcutaneous xenograft cancer model. The expression level of miR-101-3p negatively correlated with clinical tumour size and TNM stage. miR-101-3p restores ferroptosis in tumour cells by directly targeting TBLR1, which in turn promotes apoptosis and inhibits proliferation. We developed nanomedicine that can deliver miR-101-3p to tumour cells in vivo to achieve ferroptosis recovery, as well as to inhibit in vivo tumour proliferation. The miR-101-3p/TBLR1 axis plays an important role in tumour ferroptosis. Nanopharmaceuticals that increase miR-101-3p levels may be effective therapies to inhibit tumour proliferation.

Keywords: Apoptosis; Ferroptosis; Nanomedicine; Proliferation; ROS; TBLR1.

在线客服
在线客服
热线电话
 
0
    0
    我的购物车
    购物车是空的去下单